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Motivation: Large scale machine learning problems
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Supervised learning:
Model the dependence between examples ai and labels bi from a
large labeled dataset (ai , bi )i∈[1,n].



Machine learning as optimization problems

Empirical Risk Minimization

Train a parametrized model hx with parameters x .

min
x∈Rp

1

n

n
∑

i=1

L (hx(ai ), bi ) + ψ(x),
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Empirical Risk Minimization

Train a parametrized model hx with parameters x .

min
x∈Rp

1

n

n
∑

i=1

L (hx(ai ), bi ) + ψ(x),

where

L is the loss function measuring the difference between the
predicted label hx(ai ) and the true label bi .

ψ is a regularization penalty.

Logistic regression, Support Vector Machine, artificial neural
networks, etc.
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Problem setting: convex composite finite sum problems

min
x∈Rd

{

f (x) =
1

n

n
∑

i=1

fi(x) + ψ(x)

}

,
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Two major challenges:

Large finite sum.

Non smoothness of ψ.



Minimizing a finite sum problem

min
x∈Rd

{

f (x) =
1

n

n
∑

i=1

fi(x)

}

.

Stochastic Gradient methods

xk+1 = xk − ηk∇fik (xk),

where ik is randomly sampled from the set {1, · · · , n}.

[Robbins and Monro, 1951, Nedić and Bertsekas, 2001,
LeCun and Bottou, 2004, Nemirovski et al., 2009, Agarwal et al., 2009]

Hongzhou Lin Generic acceleration schemes for gradient-based optimization 5 / 38



Minimizing a finite sum problem

min
x∈Rd

{

f (x) =
1

n

n
∑

i=1

fi(x)

}

.

Stochastic Gradient methods

xk+1 = xk − ηk∇fik (xk),

where ik is randomly sampled from the set {1, · · · , n}.

Convergence

Constant stepsize ⇒ Fast but does not converge in general.

Diminishing stepsize ⇒ Converges but slow.

[Robbins and Monro, 1951, Nedić and Bertsekas, 2001,
LeCun and Bottou, 2004, Nemirovski et al., 2009, Agarwal et al., 2009]
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Incremental methods

Key idea: Variance reduction

xk+1 = xk − ηkgk ,

with E[gk ] = ∇f (xk) and Var(gk) → 0 when k grows.
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with E[gk ] = ∇f (xk) and Var(gk) → 0 when k grows.

SAG/SAGA, SVRG, SDCA, MISO/Finito.

[Shalev-Shwartz and Zhang, 2012, Schmidt et al., 2013,
Johnson and Zhang, 2013, Defazio et al., 2014a,b, Mairal, 2015]
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Key idea: Variance reduction

xk+1 = xk − ηkgk ,

with E[gk ] = ∇f (xk) and Var(gk) → 0 when k grows.

SAG/SAGA, SVRG, SDCA, MISO/Finito.

For strongly convex problems, linear convergence with constant
stepsize vs sublinear convergence of SGD.

[Shalev-Shwartz and Zhang, 2012, Schmidt et al., 2013,
Johnson and Zhang, 2013, Defazio et al., 2014a,b, Mairal, 2015]

Hongzhou Lin Generic acceleration schemes for gradient-based optimization 6 / 38



MISO: Minimization by Incremental Surrogate Optimization

objective : f = 1
n

∑n
i=1 fi f1 f2 f3 f4 · · · fn

surrogate : d̄ = 1
n

∑n
i=1 di d1 d2 d3 d4 · · · dn

Assumption

Each fi is L-smooth and µ-strongly convex.

Surrogates: quadratic lower bounds

The surrogates di are quadratic lower bounds of fi .

[Mairal, 2015]
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objective : f = 1
n

∑n
i=1 fi f1 f2 f3 f4 · · · fn

surrogate : d̄k−1 =
1
n

∑n
i=1 di d1 d2 d3 d4 · · · dn

Incremental update: iteration k ≥ 1

Randomly draw ik ∈ [1, n], say ik = 4, then update

d4(x) = f4(xk−1) +∇f4(xk−1)
T (x − xk−1) +

µ

2
‖x − xk−1‖2.
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Randomly draw ik ∈ [1, n], say ik = 4, then update

d4(x) = f4(xk−1) +∇f4(xk−1)
T (x − xk−1) +

µ

2
‖x − xk−1‖2.

Aggregation: Update the surrogate d̄k(x) and compute

xk = argmin
x∈Rd

{d̄k(x)}
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MISO: Minimization by Incremental Surrogate Optimization

objective : f = 1
n

∑n
i=1 fi f1 f2 f3 f4 · · · fn

surrogate : d̄k = 1
n

∑n
i=1 di d1 d2 d3 d4 · · · dn

Convergence

When n ≥ 2 L
µ
, the algorithm converges linearly in expectation,

E[f (xk)− d̄k(xk)] ≤ C

(

1− 1

3n

)k

(f (x0)− d̄0(x0)).

The quantity f (xk)− d̄k(xk) is an optimality certificate since

f (xk)− d̄k(xk) ≥ f (xk)− f ∗.

[Mairal, 2015]
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Comparisons of complexity: when µ > 0

Number of incremental gradient ∇fi evaluated to obtain an ε-solution:

SGD O
(

1
ε

)

(Full) GD O
(

n Lf
µ
log
(

1
ε

)

)

SVRG, SAG, SAGA, SDCA, MISO, Finito O
(

max
(

n, L
µ

)

log
(

1
ε

)

)

[Bottou et al., 2016, De Klerk et al., 2017, Taylor et al., 2017]

with diminishing stepsize
Lf is global Lipschitz constant, L is incremental Lipschitz constant.
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)

SVRG, SAG, SAGA, SDCA, MISO, Finito O
(

max
(

n, L
µ

)

log
(

1
ε

)

)

When n = 104 = L
µ
= Lf

µ
, we have

n
Lf
µ

= 108 >> max

(

n,
L

µ

)

= 104.

with diminishing stepsize
Lf is global Lipschitz constant, L is incremental Lipschitz constant.
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Composite finite sum problems

min
x∈Rd

{

f (x) =
1

n

n
∑

i=1

fi(x) + ψ(x)

}

,

Proximal operator

Given a convex function ψ, the proximal operator is defined by

proxψ(x) = argmin
z∈Rd

{

ψ(z) +
1

2
‖z − x‖2

}

.
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Not all incremental methods enjoys proximal variant.

Contribution 1: Develop a proximal variant of MISO with
theoretical guarantee.



Acceleration: µ > 0

GD O
(

n Lf
µ
log
(

1
ε

)

)

Acc-GD O
(

n
√

Lf
µ
log
(

1
ε

)

)

SVRG, SAG, SAGA, SDCA, MISO, Finito O
(

max
(

n, L
µ

)

log
(

1
ε

)

)

[Nesterov, 1983, 2004, 2007, Beck and Teboulle, 2009]
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√
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Can we do better for incremental methods?

Contribution: Two generic acceleration schemes in both convex and
strongly convex settings

Catalyst (Nesterov’s acceleration);

QuickeNing (Quasi Newton).



Main Idea:

Acceleration by Smoothing
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Main Idea:

Acceleration by Smoothing

1. Construct a smooth problem F equivalent to f .

2. Apply smooth optimization methods on F .
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Smoothing via Moreau-Yosida Regularization

The Moreau-Yosida Regularization (Moreau envelope)

Given f : Rd → R a convex function, the Moreau-Yosida regularization
of f is the function F : Rd → R defined by

F (x) = min
z∈Rd

{

f (z) +
κ

2
‖z − x‖2

}

, (1)

and the proximal operator p(x) is the unique minimizer of (1).

[Moreau, 1965, Yosida, 1980]
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Geometric interpretation

x

f

Dual formulation: F (x) = max
{

a ∈ R | ∀z , −κ
2‖z − x‖2 + a ≤ f (z)

}
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x

f

−κ

2‖z − x‖2 + a

Dual formulation: F (x) = max
{

a ∈ R | ∀z , −κ
2‖z − x‖2 + a ≤ f (z)

}
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Geometric interpretation

b

x∗

F
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The Moreau-Yosida Regularization

F (x) = min
z∈Rd

{

f (z) +
κ

2
‖z − x‖2

}

with minimizer p(x).

Basic properties

Hongzhou Lin Generic acceleration schemes for gradient-based optimization 14 / 38



The Moreau-Yosida Regularization

F (x) = min
z∈Rd

{

f (z) +
κ

2
‖z − x‖2

}

with minimizer p(x).

Basic properties

F is convex, differentiable,

Hongzhou Lin Generic acceleration schemes for gradient-based optimization 14 / 38



The Moreau-Yosida Regularization

F (x) = min
z∈Rd

{

f (z) +
κ

2
‖z − x‖2

}

with minimizer p(x).

Basic properties

F is convex, differentiable,

min
x∈Rd

F (x) = min
x∈Rd

f (x),

and the solution set of the two problems coincide with each other.

Hongzhou Lin Generic acceleration schemes for gradient-based optimization 14 / 38



The Moreau-Yosida Regularization

F (x) = min
z∈Rd

{

f (z) +
κ

2
‖z − x‖2

}

with minimizer p(x).

Basic properties

F is convex, differentiable,

min
x∈Rd

F (x) = min
x∈Rd

f (x),

and the solution set of the two problems coincide with each other.

∇F (x) = κ(x − p(x)). (2)

∇F is Lipschitz continuous with LF = κ.

Hongzhou Lin Generic acceleration schemes for gradient-based optimization 14 / 38



The Moreau-Yosida Regularization

F (x) = min
z∈Rd

{

f (z) +
κ

2
‖z − x‖2

}

with minimizer p(x).

Basic properties

F is convex, differentiable,

min
x∈Rd

F (x) = min
x∈Rd

f (x),

and the solution set of the two problems coincide with each other.

∇F (x) = κ(x − p(x)). (2)

∇F is Lipschitz continuous with LF = κ.

f µ-strongly convex ⇒ F µF -strongly convex with µF =
µκ

µ+ κ
.
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F enjoys nice properties: smoothness and strong convexity.

Perform fast smooth optimization methods to minimize F .



Accelerated proximal point algorithm

F (x) = min
z∈Rd

{

f (z) +
κ

2
‖z − x‖2

}

with minimizer p(x).

∇F (x) = κ(x − p(x)).

Apply accelerated gradient descent on Moreau-Yosida Regularization

xk+1 = yk −
1

κ
∇F (yk) = p(yk), yk+1 = xk+1 + βk+1(xk+1 − xk).

[Güler, 1992, Salzo and Villa, 2012, He and Yuan, 2012, Devolder et al., 2014]
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However, p(yk) does not have closed form solution!



Accelerated proximal point algorithm

F (x) = min
z∈Rd

{

f (z) +
κ

2
‖z − x‖2

}

with minimizer p(x).

∇F (x) = κ(x − p(x)).

Apply accelerated gradient descent on Moreau-Yosida Regularization

xk+1 = yk −
1

κ
∇F (yk) = p(yk), yk+1 = xk+1 + βk+1(xk+1 − xk).

Main recipe

Apply a first-order method M to approximately solve p(yk).

Carefully control the magnitude of inexactness.

Hongzhou Lin Generic acceleration schemes for gradient-based optimization 15 / 38



Catalyst is coming
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Main algorithm

Catalyst, a meta-algorithm

Input: an ”appropriate” optimization method M.

At iteration k , apply M to find

xk ≈ argmin
x

{

hk(x) = f (x) +
κ

2
‖x − yk−1‖2

}

,

such that hk(xk)− h∗k ≤ εk .

Then compute the next prox-center yk using an extrapolation step

yk = xk + βk(xk − xk−1).
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Catalyst is an instance of inexact accelerated proximal point algo-
rithm [Güler, 1992].

Contribution:

Provide specific choices of all parameters κ, ǫk , βk .

Provide global complexity analysis showing the acceleration.



Appropriate M = Linear convergence rate

Requirement on M
When h is strongly convex, M produces a sequence of iterates
(zt)t≥0 such that

h(zt)− h⋆ ≤ CM(1− τM)t(h(z0)− h⋆).

or
E[h(zt)]− h⋆ ≤ CM(1− τM)t(h(z0)− h⋆).
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Requirement on M
When h is strongly convex, M produces a sequence of iterates
(zt)t≥0 such that

h(zt)− h⋆ ≤ CM(1− τM)t(h(z0)− h⋆).

or
E[h(zt)]− h⋆ ≤ CM(1− τM)t(h(z0)− h⋆).

τM usually depends on the condition number L/µ, e.g.,

τM = µ
Lf

for GD,

τM = min
{

1
2n ,

µ
4L

}

for MISO.
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Important remarks:

We do not make any assumption on the convergence rate for
non strongly convex objectives.

Catalyst provides support to non strongly convex functions
even M is not defined for µ = 0.



Applications

With Catalyst

µ > 0 µ = 0 µ > 0 µ = 0

(Full) GD O
(

n L
µ
log

(

1
ε

)

)

O
(

n L
ε

)

Õ
(

n

√

Lf
µ
log

(

1
ε

)

)

a Õ

(

n

√

Lf
ε

)

SAG/SAGA

O
(

max
(

n, L
µ

)

log
(

1
ε

)

)

O
(

n L
ε

)

Õ
(

max
(

n,
√

nL
µ

)

log
(

1
ε

)

)

Õ

(

√

nL
ε

)

MISO

not avail.SDCA

SVRG

Acc-FG O
(

n

√

Lf
µ
log

(

1
ε

)

)

O
(

n
Lf
√

ε

)

no acceleration
Acc-SDCA Õ

(

max
(

n,
√

nL
µ

)

log
(

1
ε

)

)

not avail.

awhere Õ hides logarithmic factors.
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Applications

With Catalyst

µ > 0 µ = 0 µ > 0 µ = 0

(Full) GD O
(
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µ
log

(

1
ε

)

)

O
(

n L
ε

)

Õ
(

n

√

Lf
µ
log

(

1
ε

)

)

a Õ

(

n

√

Lf
ε

)

SAG/SAGA

O
(

max
(

n, L
µ

)

log
(

1
ε

)

)

O
(

n L
ε

)

Õ
(

max
(
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√

nL
µ

)

log
(

1
ε

)

)

Õ

(

√

nL
ε

)
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(
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µ
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1
ε

)

)

O
(

n
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√

ε

)

no acceleration
Acc-SDCA Õ

(

max
(

n,
√

nL
µ

)

log
(

1
ε

)

)

not avail.

Acceleration occurs when n <
L

µ
. If n = 104 and

L

µ
= 106,

max

(

n,
L

µ

)

= 106 > max

(

n,

√

n
L

µ

)

= 105.
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(
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(
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(
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1
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)

O
(
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√

ε

)
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(

max
(
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√
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µ

)
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(

1
ε

)

)

not avail.

Catalyst is optimal up to logarithmic factors.
[Woodworth and Srebro, 2016, Arjevani and Shamir, 2016]

awhere Õ hides logarithmic factors.
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Convergence analysis when µ > 0

A two-stage analysis

How many subproblems do we need to solve?

Roughly the same as Nesterov’s method but with errors.

Key: control the error accumulation.
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Convergence analysis when µ > 0

A two-stage analysis

How many subproblems do we need to solve?

Roughly the same as Nesterov’s method but with errors.

Key: control the error accumulation.

How many iterations of M do we need for each subproblem?

The required accuracy εk is decreasing.

Key: warm start the subproblems.
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How many subproblems do we need to solve?

If no error, Nesterov’s method converges linearly with rate depending on
the square root of the condition number of F :

√
q =

√

µF
LF

=

√

µ

µ+ κ
.

Accumulation of errors

Set Ak = (1−√
q)k , then the sequence (xk)k∈N satisfies

f (xk)− f ∗ ≤ 2(1−√
q)k(f (x0)− f ∗)



1 + 3

k
∑

j=1

√

εj
2Aj(f (x0)− f ∗)





2

.
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Choice of εk : Choose εk such that the series of errors converge

εk =
2

9
(f (x0)− f ∗)(1− ρ)k with ρ <

√
q.

(Remark: εk is in the same order as f (xk)− f ∗.)



How many iterations of M for each subproblem?

Main recipe

Warm start the subproblem

min
x

{

hk(x) = f (x) +
κ

2
‖x − yk−1‖2

}

using the latest iterates ≈ εk−1 solution.
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using the latest iterates ≈ εk−1 solution.

Only need to decrease the fraction εk/εk−1.
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A constant number of iterations

TM = Õ(
1

τM
)

is enough to achieve an εk solution.



Towards the global complexity

Complexity to achieve an ε-solution of f

The number of subproblems to be solved

O

(√

µ+ κ

µ
log

(

1

ε

))

.
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Global Complexity: the total number of iterations of M to guar-
antee f (xk)− f ⋆ ≤ ε is at most

Õ

(

1

τM

√

µ+ κ

µ
log

(

1

ε

))



Example: apply Catalyst to MISO

Example: MISO

τM = min

{

1

2n
,
µ+ κ

4(L + κ)

}

Apply Catalyst yields

Õ

(

max

(

n

√

µ+ κ

µ
,

L+ κ
√

(µ+ κ)µ

)

log

(

1

ε

)

)

.

Minimize the complexity respect to κ.

When n ≥ L
µ
, no acceleration.

When n < L
µ
, minimum at κ =

(L− µ)

n − 1
− µ, yielding

Õ

(
√

n
L

µ
log

(

1

ε

)

)

.
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How to choose κ?

The global complexity of Catalyst is a function of κ, we choose it
to minimize the global complexity.



Catalyst in practice: Elastic-net
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No acceleration when n = L
µ
!
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Conclusions

Significant improvement for ill-conditioned problems.

Improve the numerical stability.
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Summary: Catalyst

Theoretical acceleration for both strongly convex and non strongly
convex problems.

Significant improvement in practice for ill-conditioned problems.
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Summary: Catalyst

Theoretical acceleration for both strongly convex and non strongly
convex problems.

Significant improvement in practice for ill-conditioned problems.

Can we do better?

For worst case complexity, Catalyst is near optimal.

Exploit curvature information may lead to better practical
performance. → Quasi-Newton methods.
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Variable metric proximal point algorithm

Apply Quasi Newton methods on Moreau-Yosida Regularization

xk+1 = xk − ηkHk∇F (xk)

where Hk is an approximate inverse Hessian.
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Variable metric proximal point algorithm

Apply Quasi Newton methods on Moreau-Yosida Regularization

xk+1 = xk − ηkHk∇F (xk)

where Hk is an approximate inverse Hessian.

∇F (xk) requires to solve p(xk).

⇒ Use first order methods M to approximate.

[Fukushima and Qi, 1996, Chen and Fukushima, 1999, Burke and Qian, 2000,
Fuentes et al., 2012]
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Variable metric proximal point algorithm

Apply Quasi Newton methods on Moreau-Yosida Regularization

xk+1 = xk − ηkHk∇F (xk)

where Hk is an approximate inverse Hessian.

∇F (xk) requires to solve p(xk).

⇒ Use first order methods M to approximate.

Storing Hk is memory consuming.

⇒ Use the limited memory variant L-BFGS.

[Broyden, 1970, Fletcher, 1970, Goldfarb, 1970, Shanno, 1970, Nocedal, 1980,
Friedlander and Schmidt, 2012]
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Variable metric proximal point algorithm

Apply Quasi Newton methods on Moreau-Yosida Regularization

xk+1 = xk − ηkHk∇F (xk)

where Hk is an approximate inverse Hessian.

∇F (xk) requires to solve p(xk).

⇒ Use first order methods M to approximate.

Storing Hk is memory consuming.

⇒ Use the limited memory variant L-BFGS.
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QuickeNing: Apply L-BFGS on F with inexact gradients.



QuickeNing: A Generic Quasi-Newton framework

Perform a Quasi-Newton step

xk+1 = xk − Hkgk .

Use M to approximate gradient and function value at xk+1,

gk+1 ≈ ∇F (xk+1) and Fk+1 ≈ F (xk+1).

If Fk+1 > Fk − 1
2κ‖gk‖2,

Reset xk+1 = xk −
1

κ
gk ;

Re-evaluate gk+1 ≈ ∇F (xk+1) and Fk+1 ≈ F (xk+1).

Construct Hk+1 with L-BFGS update.
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Towards the global complexity: µ > 0

Complexity analysis

Outer-loop: the number of subproblems to be solved

O

(

µ+ κ

µ
log

(

1

ε

))

. (not better than GD)
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Inner-loop: each subproblem requires at most TM iterations of M

TM = Õ
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τM
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.
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Inner-loop: each subproblem requires at most TM iterations of M
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Global Complexity: the total iterations of M to obtain an ε-
solution is at most

Õ

(

µ+ κ

τMµ
log

(

1

ε

))



Example: apply QuickeNing to MISO

Example: MISO, The inner convergence rate is given

τM = min

{

1

2n
,
µ+ κ

4(L + κ)

}
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Example: apply QuickeNing to MISO

Example: MISO, The inner convergence rate is given

τM = min

{

1

2n
,
µ+ κ

4(L + κ)

}

which yields the global complexity

Õ
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µ
n,
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µ
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log
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ε
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Example: apply QuickeNing to MISO
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QuickeNing does not provide any theoretical acceleration, but it
does not degrade significantly the worst-case performance of M.
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QuickeNing does not provide any theoretical acceleration, but it
does not degrade significantly the worst-case performance of M.
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Then, how to choose κ?

Assume that L-BFGS performs as well as Nesterov.

Use Catalyst’s κ.



Practical variant

Each subproblem requires at most TM iterations of M.
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Each subproblem requires at most TM iterations of M.

⇒ Compute TM in advance, blindly run TM iterations of M in
each subproblem.
Benefit: no need to check the stopping condition.
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In the following experiments, we perform one-pass heuristic

for both Catalyst and QuickeNing.



QuickeNing-SVRG: Elasticnet
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Conclusions

In 10/12 cases, QuickeNing outperforms Catalyst.

Big gap between theory and practice.
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Extension to non convex problems: 4WD-Catalyst

(Joint work with Courtney Paquette and Dmitriy Drusvyatskiy from UW.)

Hongzhou Lin Generic acceleration schemes for gradient-based optimization 33 / 38



Extension to non convex problems: 4WD-Catalyst

(Joint work with Courtney Paquette and Dmitriy Drusvyatskiy from UW.)

Assumption: Weakly convex function, i.e. fi (x) +
ρ

2‖x‖2 is convex.
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Extension to non convex problems: 4WD-Catalyst

(Joint work with Courtney Paquette and Dmitriy Drusvyatskiy from UW.)

Assumption: Weakly convex function, i.e. fi (x) +
ρ

2‖x‖2 is convex.

Goal: design an algorithm which does not need to know in advance
whether the objective function is convex.

Main idea

If κ is large enough, the subproblems are strongly convex.

If the subproblems are strongly convex, constant iterations of M is
enough to achieve the desired accuracy.

Line search on κ until the subproblems are solved correctly.
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4WD-Catalyst: Two-layer neural network
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4WD-Catalyst: Two-layer neural network
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Conclusions

Acceleration in terms of function values.

It seems like 4WD-Catalyst is helpful to escape bad stationary
points.
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Conclusions and perspectives
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Conclusions

Develop theoretical grounded generic acceleration schemes.

Significant acceleration in practice for ill-conditioned problems.

Extension to non convex problems.
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Future work and perspective

Inexact proximal point

At iteration k , apply M to find

xk ≈ argmin
x

{

hk(x) = f (x) +
κ

2
‖x − yk−1‖2

}

,

such that hk(xk)− h∗k ≤ εk .

Extension to non-Euclidean metrics?
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,

such that hk(xk)− h∗k ≤ εk .

Extension to non-Euclidean metrics?

Develop parameter free acceleration schemes.

Is the smoothing helpful to escape saddle points?

Quasi-Newton methods for non convex problems? Gap between
theory and practice.
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Thank you for your
attention!
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Adaptive stopping criterion

Algorithm 1 Procedure ApproxGradient(x , κ)

1: Run M to find:

zM ≈ argmin
z∈Rd

{

h(z)
△
= f (z) +

κ

2
‖z − x‖2

}

,

until
h(zM)− h

∗ ≤
κ

36
‖zM − x‖2.

2: Evaluate

g
△
= κ(x − zM), approximate gradient;

Fa
△
= h(zM), approximate function value.

output (zM, g , Fa)
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No need to predefine the accuracy.

The criterion is adaptive, both sides depend on zM.

It is feasible since

h(zM)− h∗ → 0 while κ‖zM − x‖ → ‖∇F (x)‖.



Warm start of subproblems

Inexact proximal point

At iteration k , warm start the subproblem

min
z

{

hk(x) = f (x) +
κ

2
‖x − yk−1‖2

}

,

When ψ = 0.

When using predefined sequence, warm start at

z0 = xk−1 +
κ

κ+ µ
(yk−1 − yk−2).

When using adaptive stopping, warm start at

z0 = yk−1.

When ψ is non smooth, an additional proximal gradient step is required.
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4WD-Catalyst

Let us set
fκ(z , x) = f (z) +

κ

2
‖z − x‖2.

Algorithm 3 Auto-adapt (x , κ,T )

input x ∈ R
p, method M, κ > 0, number of iterations T .

Repeat Run T iterations of M to obtain

zT ≈ argmin
z∈Rp

fκ(z ; x).

If fκ(zT ; x) ≤ fκ(x ; x) and dist(0, ∂fκ(zT ; x)) ≤ κ‖zT − x‖,
then go to output.
else repeat with κ→ 2κ.

output (zT , κ).
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Algorithm 4 4WD-Catalyst

input x0 ∈ dom f , κ0, κcvx > 0 and T ,S > 0, and M.
initialization: α1 = 1, v0 = x0.
repeat for k = 1, 2, . . .

Compute (x̄k , κk) = Auto-adapt (xk−1, κk−1,T ).

Compute yk = αkvk−1 + (1− αk)xk−1 and apply S log(k + 1)
iterations of M to find

x̃k ≈ argmin
x∈Rp

fκcvx(x , yk).

Update vk and αk+1 by

vk = xk−1+
1

αk

(x̃k −xk−1) and αk+1 =

√

α4
k + 4α2

k − α2
k

2
.

Choose xk to be any point satisfying f (xk) = min{f (x̄k), f (x̃k)}.
until the stopping criterion dist

(

0, ∂f (x̄k)
)

< ε
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First order oracle and lower bound

Definition

We call an algorithm M an iterative first-order method if it generates a
sequence of iterates (xk)k≥0 such that

xk ∈ x0 + Span {∇f (x0), · · · ,∇f (xk−1)} , for k ≥ 1.

Theorem (Lower bounds for convex functions)

Given the dimension d, for any k with 1 ≤ k ≤ 1
2(d − 1), and any x0

in R
d , there exists a convex L-smooth function f such that for any

first-order method M,

f (xk)− f ∗ ≥ 3L‖x0 − x∗‖2
32(k + 1)2

,

‖xk − x∗‖2 ≥ 1

8
‖x0 − x∗‖2.

[Nemirovskii et al., 1983, Nesterov, 2004]
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Proximal Newton methods

min
x∈Rd

{f (x) = f0(x) + ψ(x)} ,

Proximal Newton methods

Approximate the Hessian Bk of the smooth part

xk+1 = argmin

{

f0(xk) + 〈∇f0(xk), x − xk〉+
1

2
‖x − xk‖2Bk

+ ψ(x)

}

.

NO closed form solution of such subproblem.

In practice: one pass of coordinate descent method.

[Yu et al., 2008, Lee et al., 2012, Byrd et al., 2015, Ghadimi et al., 2015,
Scheinberg and Tang, 2016]
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Hessian free: Quasi-Newton methods

Intuition: a quadratic function f (x) = xTBx satisfies the secant
equation

∇f (z)−∇f (x) = B(z − x).

The objective is locally quadratic. Construct Bk such that

∇f (xk)−∇f (xk−1) = Bk(xk − xk−1)

set yk−1 , ∇f (xk)−∇f (xk−1), sk−1 , xk − xk−1.

Update xk+1 = xk − ηkB
−1
k ∇f (xk).

Such Bk is not unique, the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method chooses Bk+1 = argminB ‖B − Bk‖, which is
given by

Bk+1 = Bk −
Bksks

⊤
k Bk

s⊤k Bksk
+

yky
⊤
k

y⊤k sk
.
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Quasi-Newton method

Enjoys superlinear convergence rate if the stepsize ηk is
chosen by a line search with Wolfe conditions.

No need of matrix inversion, B−1
k+1 can be obtained in closed

form using B−1
k .

Disadvantage: still need to store a dense d × d matrix Bk in
memory.



Limited memory methods: L-BFGS

Bk+1 = Bk −
Bksks

⊤
k Bk

s⊤k Bksk
+

yky
⊤
k

y⊤k sk
.

Observation: Bk can be uniquely determined by B0 and all the
past (si , yi), for i = 1, .., k .

Keep the most recent l vectors (si , yi), for i = k − l , .., k .

Compute B−1
k ∇f (xk) by sequentially compute vector products with

vectors in memory, named as two-loop recursion step
[Nocedal, 1980].

The step size ηk is determined by a line search.
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It is shown that L-BFGS enjoys

a big practical success of smooth optimization.

linear convergence in worst case scenario, no better than the
gradient descent method.



Cross Validation and Testing
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Cross Validation and Testing
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O. Güler. New proximal point algorithms for convex minimization. SIAM
Journal on Optimization, 2(4):649–664, 1992.

B. He and X. Yuan. An accelerated inexact proximal point algorithm for convex
minimization. Journal of Optimization Theory and Applications, 154(2):
536–548, 2012.

R. Johnson and T. Zhang. Accelerating stochastic gradient descent using
predictive variance reduction. In Advances in Neural Information Processing
Systems (NIPS), 2013.

Yann LeCun and Leon Bottou. Large scale online learning. Advances in neural
information processing systems, 16:217, 2004.

Jason Lee, Yuekai Sun, and Michael Saunders. Proximal Newton-type methods
for convex optimization. In Advances in Neural Information Processing
Systems (NIPS), 2012.

Hongzhou Lin Generic acceleration schemes for gradient-based optimization 13 / 0



References V
J. Mairal. Incremental majorization-minimization optimization with application

to large-scale machine learning. SIAM Journal on Optimization, 25(2):
829–855, 2015.
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