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Motivation: Large scale machine learning problems
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Supervised learning:
Model the dependence between examples ai and labels bi from a
large labeled dataset (ai , bi )i∈[1,n].



Machine learning as optimization problems

Empirical Risk Minimization

Train a parametrized model hx with parameters x .

min
x∈Rp

1

n

n
∑

i=1

L (hx(ai ), bi ) + ψ(x),
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Machine learning as optimization problems

Empirical Risk Minimization

Train a parametrized model hx with parameters x .

min
x∈Rp

1

n

n
∑

i=1

L (hx(ai ), bi ) + ψ(x),

where

L is the loss function measuring the difference between the
predicted label hx(ai ) and the true label bi .

ψ is a regularization penalty.

Logistic regression, Support Vector Machine, artificial neural
networks, etc.
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Problem setting: convex composite finite sum problems

min
x∈Rd

{

f (x) =
1

n

n
∑

i=1

fi(x) + ψ(x)

}

,
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Two major challenges:

Large finite sum.

Non smoothness of ψ.



Minimizing a finite sum problem

min
x∈Rd

{

f (x) =
1

n

n
∑

i=1

fi(x)

}

.

Stochastic Gradient methods

xk+1 = xk − ηk∇fik (xk),

where ik is randomly sampled from the set {1, · · · , n}.

[Robbins and Monro, 1951, Nedić and Bertsekas, 2001,
LeCun and Bottou, 2004, Nemirovski et al., 2009, Agarwal et al., 2009]
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n

n
∑

i=1

fi(x)

}

.

Stochastic Gradient methods

xk+1 = xk − ηk∇fik (xk),

where ik is randomly sampled from the set {1, · · · , n}.

Convergence

Constant stepsize ⇒ Fast but does not converge in general.

Diminishing stepsize ⇒ Converges but slow.

[Robbins and Monro, 1951, Nedić and Bertsekas, 2001,
LeCun and Bottou, 2004, Nemirovski et al., 2009, Agarwal et al., 2009]
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Incremental methods

Key idea: Variance reduction

xk+1 = xk − ηkgk ,

with E[gk ] = ∇f (xk) and Var(gk) → 0 when k grows.
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xk+1 = xk − ηkgk ,

with E[gk ] = ∇f (xk) and Var(gk) → 0 when k grows.

SAG/SAGA, SVRG, SDCA, MISO/Finito.

[Shalev-Shwartz and Zhang, 2012, Schmidt et al., 2013,
Johnson and Zhang, 2013, Defazio et al., 2014a,b, Mairal, 2015]
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Key idea: Variance reduction

xk+1 = xk − ηkgk ,

with E[gk ] = ∇f (xk) and Var(gk) → 0 when k grows.

SAG/SAGA, SVRG, SDCA, MISO/Finito.

For strongly convex problems, linear convergence with constant
stepsize vs sublinear convergence of SGD.

[Shalev-Shwartz and Zhang, 2012, Schmidt et al., 2013,
Johnson and Zhang, 2013, Defazio et al., 2014a,b, Mairal, 2015]
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MISO: Minimization by Incremental Surrogate Optimization

objective : f = 1
n

∑n
i=1 fi f1 f2 f3 f4 · · · fn

surrogate : d̄ = 1
n

∑n
i=1 di d1 d2 d3 d4 · · · dn

Assumption

Each fi is L-smooth and µ-strongly convex.

Surrogates: quadratic lower bounds

The surrogates di are quadratic lower bounds of fi .

[Mairal, 2015]
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∑n
i=1 fi f1 f2 f3 f4 · · · fn

surrogate : d̄k−1 =
1
n

∑n
i=1 di d1 d2 d3 d4 · · · dn

Incremental update: iteration k ≥ 1

Randomly draw ik ∈ [1, n], say ik = 4, then update

d4(x) = f4(xk−1) +∇f4(xk−1)
T (x − xk−1) +

µ

2
‖x − xk−1‖2.
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Incremental update: iteration k ≥ 1

Randomly draw ik ∈ [1, n], say ik = 4, then update

d4(x) = f4(xk−1) +∇f4(xk−1)
T (x − xk−1) +

µ

2
‖x − xk−1‖2.

Aggregation: Update the surrogate d̄k(x) and compute

xk = argmin
x∈Rd

{d̄k(x)}
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MISO: Minimization by Incremental Surrogate Optimization

objective : f = 1
n

∑n
i=1 fi f1 f2 f3 f4 · · · fn

surrogate : d̄k = 1
n

∑n
i=1 di d1 d2 d3 d4 · · · dn

Convergence

When n ≥ 2 L
µ
, the algorithm converges linearly in expectation,

E[f (xk)− d̄k(xk)] ≤ C

(

1− 1

3n

)k

(f (x0)− d̄0(x0)).

The quantity f (xk)− d̄k(xk) is an optimality certificate since

f (xk)− d̄k(xk) ≥ f (xk)− f ∗.

[Mairal, 2015]
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Comparisons of complexity: when µ > 0

Number of incremental gradient ∇fi evaluated to obtain an ε-solution:

SGD O
(

1
ε

)

(Full) GD O
(

n Lf
µ
log
(

1
ε

)

)

SVRG, SAG, SAGA, SDCA, MISO, Finito O
(

max
(

n, L
µ

)

log
(

1
ε

)

)

[Bottou et al., 2016, De Klerk et al., 2017, Taylor et al., 2017]

with diminishing stepsize
Lf is global Lipschitz constant, L is incremental Lipschitz constant.
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(
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µ

)

log
(

1
ε

)

)

When n = 104 = L
µ
= Lf

µ
, we have

n
Lf
µ

= 108 >> max

(

n,
L

µ

)

= 104.

with diminishing stepsize
Lf is global Lipschitz constant, L is incremental Lipschitz constant.
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Composite finite sum problems

min
x∈Rd

{

f (x) =
1

n

n
∑

i=1

fi(x) + ψ(x)

}

,

Proximal operator

Given a convex function ψ, the proximal operator is defined by

proxψ(x) = argmin
z∈Rd

{

ψ(z) +
1

2
‖z − x‖2

}

.
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Not all incremental methods enjoys proximal variant.

Contribution 1: Develop a proximal variant of MISO with
theoretical guarantee.



Acceleration: µ > 0

GD O
(

n Lf
µ
log
(

1
ε

)

)

Acc-GD O
(

n
√

Lf
µ
log
(

1
ε

)

)

SVRG, SAG, SAGA, SDCA, MISO, Finito O
(

max
(

n, L
µ

)

log
(

1
ε

)

)

[Nesterov, 1983, 2004, 2007, Beck and Teboulle, 2009]
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Can we do better for incremental methods?

Contribution: Two generic acceleration schemes in both convex and
strongly convex settings

Catalyst (Nesterov’s acceleration);

QuickeNing (Quasi Newton).



Main Idea:

Acceleration by Smoothing
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Main Idea:

Acceleration by Smoothing

1. Construct a smooth problem F equivalent to f .

2. Apply smooth optimization methods on F .
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Smoothing via Moreau-Yosida Regularization

The Moreau-Yosida Regularization (Moreau envelope)

Given f : Rd → R a convex function, the Moreau-Yosida regularization
of f is the function F : Rd → R defined by

F (x) = min
z∈Rd

{

f (z) +
κ

2
‖z − x‖2

}

, (1)

and the proximal operator p(x) is the unique minimizer of (1).

[Moreau, 1965, Yosida, 1980]
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Geometric interpretation

x

f

Dual formulation: F (x) = max
{

a ∈ R | ∀z , −κ
2‖z − x‖2 + a ≤ f (z)

}
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−κ

2‖z − x‖2 + a
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Geometric interpretation

b

x∗

F
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The Moreau-Yosida Regularization

F (x) = min
z∈Rd

{

f (z) +
κ

2
‖z − x‖2

}

with minimizer p(x).

Basic properties
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f (x),

and the solution set of the two problems coincide with each other.

∇F (x) = κ(x − p(x)). (2)

∇F is Lipschitz continuous with LF = κ.

f µ-strongly convex ⇒ F µF -strongly convex with µF =
µκ

µ+ κ
.
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F enjoys nice properties: smoothness and strong convexity.

Perform fast smooth optimization methods to minimize F .



Accelerated proximal point algorithm

F (x) = min
z∈Rd

{

f (z) +
κ

2
‖z − x‖2

}

with minimizer p(x).

∇F (x) = κ(x − p(x)).

Apply accelerated gradient descent on Moreau-Yosida Regularization

xk+1 = yk −
1

κ
∇F (yk) = p(yk), yk+1 = xk+1 + βk+1(xk+1 − xk).

[Güler, 1992, Salzo and Villa, 2012, He and Yuan, 2012, Devolder et al., 2014]
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κ
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[Güler, 1992, Salzo and Villa, 2012, He and Yuan, 2012, Devolder et al., 2014]
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However, p(yk) does not have closed form solution!



Accelerated proximal point algorithm

F (x) = min
z∈Rd

{

f (z) +
κ

2
‖z − x‖2

}

with minimizer p(x).

∇F (x) = κ(x − p(x)).

Apply accelerated gradient descent on Moreau-Yosida Regularization

xk+1 = yk −
1

κ
∇F (yk) = p(yk), yk+1 = xk+1 + βk+1(xk+1 − xk).

Main recipe

Apply a first-order method M to approximately solve p(yk).

Carefully control the magnitude of inexactness.
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Catalyst is coming
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Main algorithm

Catalyst, a meta-algorithm

Input: an ”appropriate” optimization method M.

At iteration k , apply M to find

xk ≈ argmin
x

{

hk(x) = f (x) +
κ

2
‖x − yk−1‖2

}

,

such that hk(xk)− h∗k ≤ εk .

Then compute the next prox-center yk using an extrapolation step

yk = xk + βk(xk − xk−1).
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Catalyst is an instance of inexact accelerated proximal point algo-
rithm [Güler, 1992].

Contribution:

Provide specific choices of all parameters κ, ǫk , βk .

Provide global complexity analysis showing the acceleration.



Appropriate M = Linear convergence rate

Requirement on M
When h is strongly convex, M produces a sequence of iterates
(zt)t≥0 such that

h(zt)− h⋆ ≤ CM(1− τM)t(h(z0)− h⋆).

or
E[h(zt)]− h⋆ ≤ CM(1− τM)t(h(z0)− h⋆).
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Requirement on M
When h is strongly convex, M produces a sequence of iterates
(zt)t≥0 such that

h(zt)− h⋆ ≤ CM(1− τM)t(h(z0)− h⋆).

or
E[h(zt)]− h⋆ ≤ CM(1− τM)t(h(z0)− h⋆).

τM usually depends on the condition number L/µ, e.g.,

τM = µ
Lf

for GD,

τM = min
{

1
2n ,

µ
4L

}

for MISO.
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Important remarks:

We do not make any assumption on the convergence rate for
non strongly convex objectives.

Catalyst provides support to non strongly convex functions
even M is not defined for µ = 0.



Applications

With Catalyst

µ > 0 µ = 0 µ > 0 µ = 0

(Full) GD O
(

n L
µ
log

(

1
ε

)

)

O
(

n L
ε

)

Õ
(

n

√

Lf
µ
log

(

1
ε

)

)

a Õ

(

n

√

Lf
ε

)

SAG/SAGA

O
(

max
(

n, L
µ

)

log
(

1
ε

)

)

O
(

n L
ε

)

Õ
(

max
(

n,
√

nL
µ

)

log
(

1
ε

)

)

Õ

(

√

nL
ε

)

MISO

not avail.SDCA

SVRG

Acc-FG O
(

n

√

Lf
µ
log

(

1
ε

)

)

O
(

n
Lf
√

ε

)

no acceleration
Acc-SDCA Õ

(

max
(

n,
√

nL
µ

)

log
(

1
ε

)

)

not avail.

awhere Õ hides logarithmic factors.
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√
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√
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(
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(
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)
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Acceleration occurs when n <
L

µ
. If n = 104 and

L

µ
= 106,

max

(

n,
L

µ

)

= 106 > max

(

n,

√

n
L

µ

)

= 105.
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)
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Catalyst is optimal up to logarithmic factors.
[Woodworth and Srebro, 2016, Arjevani and Shamir, 2016]

awhere Õ hides logarithmic factors.
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Convergence analysis when µ > 0

A two-stage analysis

How many subproblems do we need to solve?

Roughly the same as Nesterov’s method but with errors.

Key: control the error accumulation.
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Convergence analysis when µ > 0

A two-stage analysis

How many subproblems do we need to solve?

Roughly the same as Nesterov’s method but with errors.

Key: control the error accumulation.

How many iterations of M do we need for each subproblem?

The required accuracy εk is decreasing.

Key: warm start the subproblems.
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How many subproblems do we need to solve?

If no error, Nesterov’s method converges linearly with rate depending on
the square root of the condition number of F :

√
q =

√

µF
LF

=

√

µ

µ+ κ
.

Accumulation of errors

Set Ak = (1−√
q)k , then the sequence (xk)k∈N satisfies

f (xk)− f ∗ ≤ 2(1−√
q)k(f (x0)− f ∗)



1 + 3

k
∑

j=1

√

εj
2Aj(f (x0)− f ∗)





2

.
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Choice of εk : Choose εk such that the series of errors converge

εk =
2

9
(f (x0)− f ∗)(1− ρ)k with ρ <

√
q.

(Remark: εk is in the same order as f (xk)− f ∗.)



How many iterations of M for each subproblem?

Main recipe

Warm start the subproblem

min
x

{

hk(x) = f (x) +
κ

2
‖x − yk−1‖2

}

using the latest iterates ≈ εk−1 solution.
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A constant number of iterations

TM = Õ(
1

τM
)

is enough to achieve an εk solution.



Towards the global complexity

Complexity to achieve an ε-solution of f

The number of subproblems to be solved

O

(√

µ+ κ

µ
log

(

1

ε

))

.
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Global Complexity: the total number of iterations of M to guar-
antee f (xk)− f ⋆ ≤ ε is at most

Õ

(

1

τM

√

µ+ κ

µ
log

(

1

ε

))



Example: apply Catalyst to MISO

Example: MISO

τM = min

{

1

2n
,
µ+ κ

4(L + κ)

}

Apply Catalyst yields

Õ

(

max

(

n

√

µ+ κ

µ
,

L+ κ
√

(µ+ κ)µ

)

log

(

1

ε

)

)

.

Minimize the complexity respect to κ.

When n ≥ L
µ
, no acceleration.

When n < L
µ
, minimum at κ =

(L− µ)

n − 1
− µ, yielding

Õ

(
√

n
L

µ
log

(

1

ε

)

)

.
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How to choose κ?

The global complexity of Catalyst is a function of κ, we choose it
to minimize the global complexity.



Catalyst in practice: Elastic-net
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No acceleration when n = L
µ
!
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Conclusions

Significant improvement for ill-conditioned problems.

Improve the numerical stability.
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Summary: Catalyst

Theoretical acceleration for both strongly convex and non strongly
convex problems.

Significant improvement in practice for ill-conditioned problems.

Hongzhou Lin Generic acceleration schemes for gradient-based optimization 26 / 38



Summary: Catalyst

Theoretical acceleration for both strongly convex and non strongly
convex problems.

Significant improvement in practice for ill-conditioned problems.

Can we do better?

For worst case complexity, Catalyst is near optimal.

Exploit curvature information may lead to better practical
performance. → Quasi-Newton methods.

Hongzhou Lin Generic acceleration schemes for gradient-based optimization 26 / 38



Variable metric proximal point algorithm

Apply Quasi Newton methods on Moreau-Yosida Regularization

xk+1 = xk − ηkHk∇F (xk)

where Hk is an approximate inverse Hessian.
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Variable metric proximal point algorithm

Apply Quasi Newton methods on Moreau-Yosida Regularization

xk+1 = xk − ηkHk∇F (xk)

where Hk is an approximate inverse Hessian.

∇F (xk) requires to solve p(xk).

⇒ Use first order methods M to approximate.

[Fukushima and Qi, 1996, Chen and Fukushima, 1999, Burke and Qian, 2000,
Fuentes et al., 2012]
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Variable metric proximal point algorithm

Apply Quasi Newton methods on Moreau-Yosida Regularization

xk+1 = xk − ηkHk∇F (xk)

where Hk is an approximate inverse Hessian.

∇F (xk) requires to solve p(xk).

⇒ Use first order methods M to approximate.

Storing Hk is memory consuming.

⇒ Use the limited memory variant L-BFGS.

[Broyden, 1970, Fletcher, 1970, Goldfarb, 1970, Shanno, 1970, Nocedal, 1980,
Friedlander and Schmidt, 2012]
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Variable metric proximal point algorithm

Apply Quasi Newton methods on Moreau-Yosida Regularization

xk+1 = xk − ηkHk∇F (xk)

where Hk is an approximate inverse Hessian.

∇F (xk) requires to solve p(xk).

⇒ Use first order methods M to approximate.

Storing Hk is memory consuming.

⇒ Use the limited memory variant L-BFGS.

Hongzhou Lin Generic acceleration schemes for gradient-based optimization 27 / 38

QuickeNing: Apply L-BFGS on F with inexact gradients.



QuickeNing: A Generic Quasi-Newton framework

Perform a Quasi-Newton step

xk+1 = xk − Hkgk .

Use M to approximate gradient and function value at xk+1,

gk+1 ≈ ∇F (xk+1) and Fk+1 ≈ F (xk+1).

If Fk+1 > Fk − 1
2κ‖gk‖2,

Reset xk+1 = xk −
1

κ
gk ;

Re-evaluate gk+1 ≈ ∇F (xk+1) and Fk+1 ≈ F (xk+1).

Construct Hk+1 with L-BFGS update.
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Towards the global complexity: µ > 0

Complexity analysis

Outer-loop: the number of subproblems to be solved

O

(

µ+ κ

µ
log

(

1

ε

))

. (not better than GD)
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Inner-loop: each subproblem requires at most TM iterations of M
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τM
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.
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Inner-loop: each subproblem requires at most TM iterations of M
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Global Complexity: the total iterations of M to obtain an ε-
solution is at most

Õ

(

µ+ κ

τMµ
log

(

1

ε

))



Example: apply QuickeNing to MISO

Example: MISO, The inner convergence rate is given

τM = min

{

1

2n
,
µ+ κ

4(L + κ)

}
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Example: apply QuickeNing to MISO

Example: MISO, The inner convergence rate is given

τM = min

{
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}

which yields the global complexity

Õ
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µ
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Example: apply QuickeNing to MISO
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QuickeNing does not provide any theoretical acceleration, but it
does not degrade significantly the worst-case performance of M.
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QuickeNing does not provide any theoretical acceleration, but it
does not degrade significantly the worst-case performance of M.
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Then, how to choose κ?

Assume that L-BFGS performs as well as Nesterov.

Use Catalyst’s κ.



Practical variant

Each subproblem requires at most TM iterations of M.
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⇒ Compute TM in advance, blindly run TM iterations of M in
each subproblem.
Benefit: no need to check the stopping condition.
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In the following experiments, we perform one-pass heuristic

for both Catalyst and QuickeNing.



QuickeNing-SVRG: Elasticnet
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Conclusions

In 10/12 cases, QuickeNing outperforms Catalyst.

Big gap between theory and practice.
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Extension to non convex problems: 4WD-Catalyst

(Joint work with Courtney Paquette and Dmitriy Drusvyatskiy from UW.)
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ρ
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Extension to non convex problems: 4WD-Catalyst

(Joint work with Courtney Paquette and Dmitriy Drusvyatskiy from UW.)

Assumption: Weakly convex function, i.e. fi (x) +
ρ

2‖x‖2 is convex.

Goal: design an algorithm which does not need to know in advance
whether the objective function is convex.

Main idea

If κ is large enough, the subproblems are strongly convex.

If the subproblems are strongly convex, constant iterations of M is
enough to achieve the desired accuracy.

Line search on κ until the subproblems are solved correctly.
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4WD-Catalyst: Two-layer neural network
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4WD-Catalyst: Two-layer neural network
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Conclusions

Acceleration in terms of function values.

It seems like 4WD-Catalyst is helpful to escape bad stationary
points.
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Conclusions and perspectives
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Conclusions

Develop theoretical grounded generic acceleration schemes.
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Future work and perspective

Inexact proximal point

At iteration k , apply M to find

xk ≈ argmin
x

{

hk(x) = f (x) +
κ

2
‖x − yk−1‖2

}

,

such that hk(xk)− h∗k ≤ εk .

Extension to non-Euclidean metrics?

Hongzhou Lin Generic acceleration schemes for gradient-based optimization 37 / 38



Future work and perspective

Inexact proximal point

At iteration k , apply M to find

xk ≈ arg min
x

{

hk(x) = f (x) +
κ

2
‖x − yk−1‖

2
}

,

such that hk(xk)− h∗k ≤ εk .

Extension to non-Euclidean metrics?

Develop parameter free acceleration schemes.

Hongzhou Lin Generic acceleration schemes for gradient-based optimization 37 / 38



Future work and perspective

Inexact proximal point

At iteration k , apply M to find

xk ≈ argmin
x

{

hk(x) = f (x) +
κ

2
‖x − yk−1‖2

}

,

such that hk(xk)− h∗k ≤ εk .

Extension to non-Euclidean metrics?

Develop parameter free acceleration schemes.

Is the smoothing helpful to escape saddle points?

Hongzhou Lin Generic acceleration schemes for gradient-based optimization 37 / 38



Future work and perspective

Inexact proximal point

At iteration k , apply M to find

xk ≈ argmin
x

{

hk(x) = f (x) +
κ

2
‖x − yk−1‖2

}

,

such that hk(xk)− h∗k ≤ εk .

Extension to non-Euclidean metrics?

Develop parameter free acceleration schemes.

Is the smoothing helpful to escape saddle points?

Quasi-Newton methods for non convex problems? Gap between
theory and practice.
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Thank you for your
attention!
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Adaptive stopping criterion

Algorithm 1 Procedure ApproxGradient(x , κ)

1: Run M to find:

zM ≈ argmin
z∈Rd

{

h(z)
△
= f (z) +

κ

2
‖z − x‖2

}

,

until
h(zM)− h

∗ ≤
κ

36
‖zM − x‖2.

2: Evaluate

g
△
= κ(x − zM), approximate gradient;

Fa
△
= h(zM), approximate function value.

output (zM, g , Fa)
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No need to predefine the accuracy.

The criterion is adaptive, both sides depend on zM.

It is feasible since

h(zM)− h∗ → 0 while κ‖zM − x‖ → ‖∇F (x)‖.



Warm start of subproblems

Inexact proximal point

At iteration k , warm start the subproblem

min
z

{

hk(x) = f (x) +
κ

2
‖x − yk−1‖2

}

,

When ψ = 0.

When using predefined sequence, warm start at

z0 = xk−1 +
κ

κ+ µ
(yk−1 − yk−2).

When using adaptive stopping, warm start at

z0 = yk−1.

When ψ is non smooth, an additional proximal gradient step is required.
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4WD-Catalyst

Let us set
fκ(z , x) = f (z) +

κ

2
‖z − x‖2.

Algorithm 3 Auto-adapt (x , κ,T )

input x ∈ R
p, method M, κ > 0, number of iterations T .

Repeat Run T iterations of M to obtain

zT ≈ argmin
z∈Rp

fκ(z ; x).

If fκ(zT ; x) ≤ fκ(x ; x) and dist(0, ∂fκ(zT ; x)) ≤ κ‖zT − x‖,
then go to output.
else repeat with κ→ 2κ.

output (zT , κ).
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Algorithm 4 4WD-Catalyst

input x0 ∈ dom f , κ0, κcvx > 0 and T ,S > 0, and M.
initialization: α1 = 1, v0 = x0.
repeat for k = 1, 2, . . .

Compute (x̄k , κk) = Auto-adapt (xk−1, κk−1,T ).

Compute yk = αkvk−1 + (1− αk)xk−1 and apply S log(k + 1)
iterations of M to find

x̃k ≈ argmin
x∈Rp

fκcvx(x , yk).

Update vk and αk+1 by

vk = xk−1+
1

αk

(x̃k −xk−1) and αk+1 =

√

α4
k + 4α2

k − α2
k

2
.

Choose xk to be any point satisfying f (xk) = min{f (x̄k), f (x̃k)}.
until the stopping criterion dist

(

0, ∂f (x̄k)
)

< ε
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First order oracle and lower bound

Definition

We call an algorithm M an iterative first-order method if it generates a
sequence of iterates (xk)k≥0 such that

xk ∈ x0 + Span {∇f (x0), · · · ,∇f (xk−1)} , for k ≥ 1.

Theorem (Lower bounds for convex functions)

Given the dimension d, for any k with 1 ≤ k ≤ 1
2(d − 1), and any x0

in R
d , there exists a convex L-smooth function f such that for any

first-order method M,

f (xk)− f ∗ ≥ 3L‖x0 − x∗‖2
32(k + 1)2

,

‖xk − x∗‖2 ≥ 1

8
‖x0 − x∗‖2.

[Nemirovskii et al., 1983, Nesterov, 2004]
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Proximal Newton methods

min
x∈Rd

{f (x) = f0(x) + ψ(x)} ,

Proximal Newton methods

Approximate the Hessian Bk of the smooth part

xk+1 = argmin

{

f0(xk) + 〈∇f0(xk), x − xk〉+
1

2
‖x − xk‖2Bk

+ ψ(x)

}

.

NO closed form solution of such subproblem.

In practice: one pass of coordinate descent method.

[Yu et al., 2008, Lee et al., 2012, Byrd et al., 2015, Ghadimi et al., 2015,
Scheinberg and Tang, 2016]
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Hessian free: Quasi-Newton methods

Intuition: a quadratic function f (x) = xTBx satisfies the secant
equation

∇f (z)−∇f (x) = B(z − x).

The objective is locally quadratic. Construct Bk such that

∇f (xk)−∇f (xk−1) = Bk(xk − xk−1)

set yk−1 , ∇f (xk)−∇f (xk−1), sk−1 , xk − xk−1.

Update xk+1 = xk − ηkB
−1
k ∇f (xk).

Such Bk is not unique, the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method chooses Bk+1 = argminB ‖B − Bk‖, which is
given by

Bk+1 = Bk −
Bksks

⊤
k Bk

s⊤k Bksk
+

yky
⊤
k

y⊤k sk
.
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Quasi-Newton method

Enjoys superlinear convergence rate if the stepsize ηk is
chosen by a line search with Wolfe conditions.

No need of matrix inversion, B−1
k+1 can be obtained in closed

form using B−1
k .

Disadvantage: still need to store a dense d × d matrix Bk in
memory.



Limited memory methods: L-BFGS

Bk+1 = Bk −
Bksks

⊤
k Bk

s⊤k Bksk
+

yky
⊤
k

y⊤k sk
.

Observation: Bk can be uniquely determined by B0 and all the
past (si , yi), for i = 1, .., k .

Keep the most recent l vectors (si , yi), for i = k − l , .., k .

Compute B−1
k ∇f (xk) by sequentially compute vector products with

vectors in memory, named as two-loop recursion step
[Nocedal, 1980].

The step size ηk is determined by a line search.
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It is shown that L-BFGS enjoys

a big practical success of smooth optimization.

linear convergence in worst case scenario, no better than the
gradient descent method.



Cross Validation and Testing
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Cross Validation and Testing
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