

ResNet with one-neuron hidden layer is a Universal Approximator

Hongzhou Lin, Stefanie Jegelka

The representational power of Neural Network

In the 90's: Universal approximation theorem

1 Hidden layer, width goes to infinity →universal approximation

[Cybenko 1989, Funahashi 1989, Hornik et al 1989, Kurková 1992]

Recently: Deep Learning with hundreds of layers

Question: what is the minimum condition on the width such that universal approximation still hold when the depth goes to infinity?

A motivating example: Classifying the unit ball distribution

Failure case: Narrow Fully connected Network

- ◆ Narrow: number of neurons in each hidden layer ≤ the input dimension.
- ◆ Here, we apply FNN with 2 neurons per hidden layer using ReLU activation.

Theorem: In the input features are in R^d, a fully connected network with **d** neurons per layer always has unbounded decision boundary. [Lu et al 2017, Hanin et al 2017]

Success case: Residual network with one-neuron hidden layer

Theorem: ResNet with **one-neuron hidden layer** is a universal approximator in the space of integrable functions $\mathcal{E}_1(R^d)$. In other words, for any $\varepsilon > 0$, there is a ResNet R with finitely many layers such that

$$\int_{\mathbb{R}^d} |f(x) - R(x)| dx \le \epsilon.$$

- ◆ The result holds for any input dimension d.
- ◆ ResNet: O(d) parameters **vs** Fully connected network: O(d²) parameters.

A sketch of proof for one dimension case

Operations realizable by one-neuron ResNet:

→ First, construct an increasing trapezoid function;

◆ Second, adjust the function value on each subdivision.

Take away message:

- **♦** ResNet architecture increases the representational power.
- **♦** Stands in sharp contrast to fully connected network.